CE 361

In-Class Design Problem \#3: Geometric Design (2)

For this exercise, you are to design a single-lane interchange ramp (so $R=R_{v}$) to connect two highways that intersect at a right angle as shown below (and as described in Example 3.18 on page 87). As in this example, the north-south highway is the existing highway and is at a constant grade at elevation 565.5 ft . The east-west highway new construction and is to be designed at a constant grade above the north-south highway with a bridge structure depth of 6 ft to the roadway surface (you can determine the elevation of the east-west roadway using desirable AASHTO recommendations).

The ramp designed in Example 3.18 is for eastbound traffic going south. Using the same roads (elevations etc.), design a clover-leaf ramp for eastbound traffic going north. The ramp is to consist of a horizontal curve starting on the east-west highway with a $P C$ starting at station $49+60$. For this ramp, a 12 percent superelevation is to be used with a $30 \mathrm{mi} / \mathrm{h}$ design speed. Determine:

- the length of the ramp
- minimum M_{s} for horizontal curve sight distance
- a vertical alignment to connect the two highways (crest, constant grade section, sag) that starts at the PC and ends at the PT of the horizontal curve. Note that these curves are to be constructed in a jurisdiction that has minimum vertical curve lengths equal to 3 times the design speed (in $\mathbf{m i} / \mathbf{h}$). See discussion above Table 3.2 on page 62 of the text.
- give stations and elevations of $P V C ' \mathrm{~s}, P V T \mathrm{~s}, P V T \mathrm{~s}, P C$ and $P T$

